NAME
coap_cache, coap_cache_derive_key, coap_cache_derive_key_w_ignore, coap_delete_cache_key, coap_cache_ignore_options, coap_new_cache_entry, coap_delete_cache_entry, coap_cache_get_by_key, coap_cache_get_by_pdu, coap_cache_get_pdu, coap_cache_set_app_data, coap_cache_get_app_data - Work with CoAP cache functions
SYNOPSIS
#include <coap3/coap.h>
coap_cache_key_t *coap_cache_derive_key(const coap_session_t *session,
const coap_pdu_t *pdu, coap_cache_session_based_t session_based);
coap_cache_key_t *coap_cache_derive_key_w_ignore(
const coap_session_t *session, const coap_pdu_t *pdu,
coap_cache_session_based_t session_based,
const uint16_t *ignore_options, size_t ignore_count);
void coap_delete_cache_key(coap_cache_key_t *cache_key);
int coap_cache_ignore_options(coap_context_t *context,
const uint16_t *options, size_t count);
coap_cache_entry_t *coap_new_cache_entry(coap_session_t *session,
const coap_pdu_t *pdu, coap_cache_record_pdu_t record_pdu,
coap_cache_session_based_t session_based, unsigned int idle_timeout);
void coap_delete_cache_entry(coap_context_t *context,
coap_cache_entry_t *cache_entry);
coap_cache_entry_t *coap_cache_get_by_key(coap_context_t *context,
const coap_cache_key_t *cache_key);
coap_cache_entry_t *coap_cache_get_by_pdu(coap_session_t *session,
const coap_pdu_t *pdu, coap_cache_session_based_t session_based);
const coap_pdu_t *coap_cache_get_pdu(const coap_cache_entry_t *cache_entry);
void coap_cache_set_app_data(coap_cache_entry_t *cache_entry, void *data,
coap_cache_app_data_free_callback_t callback);
void *coap_cache_get_app_data(const coap_cache_entry_t *cache_entry);
For specific (D)TLS library support, link with
-lcoap-3-notls, -lcoap-3-gnutls,
-lcoap-3-openssl, -lcoap-3-mbedtls
or -lcoap-3-tinydtls. Otherwise, link with
-lcoap-3 to get the default (D)TLS library support.
DESCRIPTION
The CoAP Cache provides support for two opaque objects that can be used for
tracking requests and responses.
The first is the ability to derive a Cache Key from the cacheable parts of a
CoAP PDU as defined in
"RFC7252 5.6. Caching"
updated by
"RFC7641 2. The Observe Option"
and
"RFC8132 2. Fetch Method".
The Cache Key is a SHA256 digest if libcoap was built with TLS support,
otherwise it uses the internal coap_hash() function, using the information
abstracted from the PDU and (optionally) the CoAP session.
This Cache Key can then be used to match against incoming PDUs and then
appropriate action logic can take place.
There is support for excluding specific CoAP options from the Cache Key.
Examples could be to exclude CoAP BLOCK1 and BLOCK2 Options for the client or
server for ease of tracking a large PUT or GET response, but to not exclude
these CoAP options in a proxy where it makes sense to cache the individual
blocks.
The second is providing Cache Entries (which can be looked up by PDU and hence
by Cache Key) which hold additional information to make information tracking
simpler. These Cache Entries are automatically deleted when a session closes
or a context is deleted. These Cache Entries are maintained on a hashed list
for speed of lookup.
The following enums are defined.
typedef enum coap_cache_session_based_t {
COAP_CACHE_NOT_SESSION_BASED,
COAP_CACHE_IS_SESSION_BASED
} coap_cache_session_based_t;
typedef enum coap_cache_record_pdu_t {
COAP_CACHE_NOT_RECORD_PDU,
COAP_CACHE_RECORD_PDU
} coap_cache_record_pdu_t;
FUNCTIONS
Function: coap_cache_derive_key()
The coap_cache_derive_key() function abstracts all the non NoCacheKey CoAP
options, ignores the CoAP Observe option and includes a FETCH body from pdu.
If session_based is COAP_CACHE_IS_SESSION_BASED, then session pointer is
also included. CoAP options can be specifically ignored by the use of
coap_cache_ignore_options(). A digest is then built from all of the
information and returned. NULL is returned on error.
Function: coap_cache_derive_key_w_ignore()
The coap_cache_derive_key_w_ignore() function abstracts all the non
NoCacheKey CoAP options, ignores the CoAP Observe option and includes a FETCH
body from pdu. Further options to ignore are specified by the ignore_count
of ignore_options. If session_based is COAP_CACHE_IS_SESSION_BASED, then
session pointer is also included. A digest is then built from all of the
information and returned. NULL is returned on error.
Function: coap_delete_cache_key()
The coap_delete_cache_key() function deletes the cache_key that was
returned from a coap_cache_derive_key() or
coap_cache_derive_key_w_ignore() call.
Function: coap_cache_ignore_options()
The coap_cache_ignore_options() function is used to store in context a
list of count options held in options. The specified options will not
be included in the data used for the coap_cache_derive_key() function.
Function: coap_new_cache_entry()
The coap_new_cache_entry() function will create a new Cache Entry based on
the Cache Key derived from the pdu, session_based and session. If
record_pdu is COAP_CACHE_RECORD_PDU, then a copy of the pdu is stored in
the Cache Entry for subsequent retrieval. The Cache Entry can also store
application specific data (coap_cache_set_app_data() and
coap_cache_get_app_data()). idle_timeout in seconds defines the length of
time not being used before it gets deleted. If idle_timeout is set to
0, then the Cache Entry will not get idle expired. The created Cache
Entry is returned, or NULL on error.
Function: coap_delete_cache_entry()
The coap_delete_cache_entry() function can be used to delete the Cache Entry
cache_entry held within context. This will remove the Cache Entry from
the hash lookup list and
free off any internally held data. If the Cache Entry is session based, then
it will automatically get deleted when the session is freed off or when the
idle timeout expires.
Function: coap_cache_get_by_key()
The coap_cache_get_by_key() function will locate the Cache Entry held in the
context environment that has Cache Key cache_key. Returns NULL if the
Cache Key was not found.
Function: coap_cache_get_by_pdu()
The coap_cache_get_by_pdu() function will locate the Cache Entry held in the
session environment that has a Cache Key derived from the pdu and
whether session_based or not. This function calls coap_cache_derive_key()
internally, and so normally coap_cache_ignore_options() would have
previously been called with COAP_OPTION_BLOCK1 or COAP_OPTION_BLOCK2 to
ignore the values held within these options.
Function: coap_cache_get_pdu()
The coap_cache_get_pdu() function returns the PDU that was stored with the
Cache Entry when it was created with coap_new_cache_entry() and record_pdu
was set to COAP_CACHE_RECORD_PDU. If a PDU was not initially stored, NULL is
returned.
NOTE: A copy of the returned PDU must be taken for use in sending a CoAP
packet using coap_pdu_duplicate().
Function: coap_cache_set_app_data()
The coap_cache_set_app_data() function is used to associate data with the
cache_entry. If callback is not NULL, it points to a function to free off
data when the cache_entry is deleted. If any data has been previously
stored in the cache_entry, the pointer to the old data will get overwritten,
but the old data will not get freed off.
The callback handler function prototype is defined as:
typedef void (*coap_cache_app_data_free_callback_t)(void *data);
where data is passed into the callback function whenever the Cache Entry is
deleted.
Function: coap_cache_get_app_data()
The coap_cache_get_app_data() function is used to get the previously stored
data in the cache_entry.
EXAMPLES
PUT Handler supporting BLOCK1
#include <coap3/coap.h>
static coap_binary_t *example_data_ptr = NULL;
static int example_data_media_type = COAP_MEDIATYPE_TEXT_PLAIN;
static void
cache_free_app_data(void *data) {
coap_binary_t *bdata = (coap_binary_t*)data;
coap_delete_binary(bdata);
}
/*
* Large Data PUT handler
*/
static void
hnd_put_example_data(coap_context_t *ctx,
coap_resource_t *resource,
coap_session_t *session,
coap_pdu_t *request,
coap_binary_t *token,
coap_string_t *query,
coap_pdu_t *response
) {
size_t size;
const uint8_t *data;
coap_opt_iterator_t opt_iter;
coap_opt_t *option;
size_t offset;
size_t total;
coap_binary_t *data_so_far;
/* Remove (void) definition if variable is used */
(void)ctx;
(void)token;
(void)query;
if (coap_get_data_large(request, &size, &data, &offset, &total) &&
size != total) {
/*
* A part of the data has been received (COAP_BLOCK_SINGLE_BODY not set).
* However, total unfortunately is only an indication, so it is not safe to
* allocate a block based on total. As per
* https://rfc-editor.org/rfc/rfc7959#section-4
* o In a request carrying a Block1 Option, to indicate the current
* estimate the client has of the total size of the resource
* representation, measured in bytes ("size indication").
*
* coap_cache_ignore_options() must have previously been called with at
* least COAP_OPTION_BLOCK1 set as the option value will change per block.
*/
coap_cache_entry_t *cache_entry = coap_cache_get_by_pdu(session,
request,
COAP_CACHE_IS_SESSION_BASED);
if (offset == 0) {
if (!cache_entry) {
/*
* Set idle_timeout parameter to COAP_MAX_TRANSMIT_WAIT if you want
* early removal on transmission failure. 0 means only delete when
* the session is deleted as session_based is set here.
*/
cache_entry = coap_new_cache_entry(session, request,
COAP_CACHE_NOT_RECORD_PDU,
COAP_CACHE_IS_SESSION_BASED, 0);
}
else {
data_so_far = coap_cache_get_app_data(cache_entry);
if (data_so_far) {
coap_delete_binary(data_so_far);
data_so_far = NULL;
}
coap_cache_set_app_data(cache_entry, NULL, NULL);
}
}
if (!cache_entry) {
if (offset == 0) {
coap_log_warn("Unable to create a new cache entry\n");
}
else {
coap_log_warn(
"No cache entry available for the non-first BLOCK\n");
}
coap_pdu_set_code(response, COAP_RESPONSE_CODE_INTERNAL_ERROR);
return;
}
if (size) {
/* Add in the new data to cache entry */
data_so_far = coap_cache_get_app_data(cache_entry);
data_so_far = coap_block_build_body(data_so_far, size, data,
offset, total);
/* Yes, data_so_far can be NULL if error */
coap_cache_set_app_data(cache_entry, data_so_far, cache_free_app_data);
}
if (offset + size == total) {
/* All the data is now in */
data_so_far = coap_cache_get_app_data(cache_entry);
coap_cache_set_app_data(cache_entry, NULL, NULL);
}
else {
/* Give us the next block response */
coap_pdu_set_code(response, COAP_RESPONSE_CODE_CONTINUE);
return;
}
}
else {
/* single body of data received */
data_so_far = coap_new_binary(size);
if (data_so_far) {
memcpy(data_so_far->s, data, size);
}
}
if (example_data_ptr) {
/* pre-existed response */
coap_pdu_set_code(response, COAP_RESPONSE_CODE_CHANGED);
coap_delete_binary(example_data_ptr);
}
else
/* just generated response */
coap_pdu_set_code(response, COAP_RESPONSE_CODE_CREATED);
example_data_ptr = data_so_far;
if ((option = coap_check_option(request, COAP_OPTION_CONTENT_FORMAT,
&opt_iter)) != NULL) {
example_data_media_type =
coap_decode_var_bytes (coap_opt_value (option),
coap_opt_length (option));
}
else {
example_data_media_type = COAP_MEDIATYPE_TEXT_PLAIN;
}
coap_pdu_set_code(response, COAP_RESPONSE_CODE_CHANGED);
coap_resource_notify_observers(resource, NULL);
}
int
main(int argc, char* argv[]) {
coap_context_t *ctx = NULL; /* Set up as normal */
/* ... */
uint16_t cache_ignore_options[] = { COAP_OPTION_BLOCK1,
COAP_OPTION_BLOCK2 };
/* Initialize libcoap library */
coap_startup();
/* Remove (void) definition if variable is used */
(void)argc;
(void)argv;
/* ... */
/** Define the options to ignore when setting up cache-keys */
coap_cache_ignore_options(ctx, cache_ignore_options,
sizeof(cache_ignore_options)/sizeof(cache_ignore_options[0]));
/* ... */
coap_cleanup();
}